59 research outputs found

    Rethinking Pseudo-LiDAR Representation

    Full text link
    The recently proposed pseudo-LiDAR based 3D detectors greatly improve the benchmark of monocular/stereo 3D detection task. However, the underlying mechanism remains obscure to the research community. In this paper, we perform an in-depth investigation and observe that the efficacy of pseudo-LiDAR representation comes from the coordinate transformation, instead of data representation itself. Based on this observation, we design an image based CNN detector named Patch-Net, which is more generalized and can be instantiated as pseudo-LiDAR based 3D detectors. Moreover, the pseudo-LiDAR data in our PatchNet is organized as the image representation, which means existing 2D CNN designs can be easily utilized for extracting deep features from input data and boosting 3D detection performance. We conduct extensive experiments on the challenging KITTI dataset, where the proposed PatchNet outperforms all existing pseudo-LiDAR based counterparts. Code has been made available at: https://github.com/xinzhuma/patchnet.Comment: ECCV2020. Supplemental Material attache

    Skip DETR: end-to-end Skip connection model for small object detection in forestry pest dataset

    Get PDF
    Object detection has a wide range of applications in forestry pest control. However, forest pest detection faces the challenges of a lack of datasets and low accuracy of small target detection. DETR is an end-to-end object detection model based on the transformer, which has the advantages of simple structure and easy migration. However, the object query initialization of DETR is random, and random initialization will cause the model convergence to be slow and unstable. At the same time, the correlation between different network layers is not strong, resulting in DETR is not very ideal in small object training, optimization, and performance. In order to alleviate these problems, we propose Skip DETR, which improves the feature fusion between different network layers through skip connection and the introduction of spatial pyramid pooling layers so as to improve the detection results of small objects. We performed experiments on Forestry Pest Datasets, and the experimental results showed significant AP improvements in our method. When the value of IoU is 0.5, our method is 7.7% higher than the baseline and 6.1% higher than the detection result of small objects. Experimental results show that the application of skip connection and spatial pyramid pooling layer in the detection framework can effectively improve the effect of small-sample obiect detection

    Modeling and Simulation of Nonmotorized Vehicles’ Dispersion at Mixed Flow Intersections

    Get PDF
    Interactions between motorized and nonmotorized vehicles have drawn considerable attention from researchers. They are commonly seen at mixed flow intersections where nonmotorized vehicles, without the restriction of lane markers or physical barriers, may disperse into adjacent lanes and thus lead to complex interactions with motorized vehicles. Such a dispersion phenomenon between heterogeneous participants (e-bikes and bicycles as nonmotorized vehicles versus motorized vehicles) is difficult to model. In this paper, we were inspired by the dispersion of charged particles in an electric field and modeled the dispersion phenomenon of go-straight, nonmotorized vehicles at mixed flow intersections accordingly, as it was discovered in this research that these two dispersion phenomena share three underlying commonalities with each other. A novel particle dispersion model (PDM) based on a particle’s movement in an electric field is proposed. The model is calibrated and validated using 1,490 high-definition sets of trajectory data for go-straight, nonmotorized vehicles during 43 cycles at two typical mixed flow intersections. The PDM is compared with the social force model (SFM) on their dispersion characteristics that are used to describe the nonmotorized bicycles’ behavior. The results show that the PDM performs better than the SFM with regard to depicting the dispersion characteristic indices of the nonmotorized vehicles, such as the travel time, the dispersion intensity of heterogeneous nonmotorized vehicles, the sectional dispersion degree, and other dispersion characteristics. Document type: Articl

    Low-Theta Electroencephalography Coherence Predicts Cigarette Craving in Nicotine Addiction

    Get PDF
    Addicts are often vulnerable to drug use in the presence of drug cues, which elicit significant drug cue reactivity. Mounting neuroimaging evidence suggests an association between functional magnetic resonance imaging connectivity networks and smoking cue reactivity; however, there is still little understanding of the electroencephalography (EEG) coherence basis of smoking cue reactivity. We therefore designed two independent experiments wherein nicotine-dependent smokers performed a smoking cue reactivity task during EEG recording. Experiment I showed that a low-theta EEG coherence network occurring 400–600 ms after onset during long-range (mainly between frontal and parieto-occipital) scalp regions, which was involved in smoking cue reactivity. Moreover, the average coherence of this network was significantly correlated with participants’ level of cigarette craving. In experiment II, we tested an independent group of smokers and demonstrated that the low-theta coherence network significantly predicted changes in individuals’ cigarette craving. Thus, the low-theta EEG coherence in smokers’ brains might be a biomarker of smoking cue reactivity and can predict addiction behavior

    Prediction model of obstructive sleep apnea–related hypertension: Machine learning–based development and interpretation study

    Get PDF
    BackgroundObstructive sleep apnea (OSA) is a globally prevalent disease closely associated with hypertension. To date, no predictive model for OSA-related hypertension has been established. We aimed to use machine learning (ML) to construct a model to analyze risk factors and predict OSA-related hypertension.Materials and methodsWe retrospectively collected the clinical data of OSA patients diagnosed by polysomnography from October 2019 to December 2021 and randomly divided them into training and validation sets. A total of 1,493 OSA patients with 27 variables were included. Independent risk factors for the risk of OSA-related hypertension were screened by the multifactorial logistic regression models. Six ML algorithms, including the logistic regression (LR), the gradient boosting machine (GBM), the extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), bootstrapped aggregating (Bagging), and the multilayer perceptron (MLP), were used to develop the model on the training set. The validation set was used to tune the model hyperparameters to determine the final prediction model. We compared the accuracy and discrimination of the models to identify the best machine learning algorithm for predicting OSA-related hypertension. In addition, a web-based tool was developed to promote its clinical application. We used permutation importance and Shapley additive explanations (SHAP) to determine the importance of the selected features and interpret the ML models.ResultsA total of 18 variables were selected for the models. The GBM model achieved the most extraordinary discriminatory ability (area under the receiver operating characteristic curve = 0.873, accuracy = 0.885, sensitivity = 0.713), and on the basis of this model, an online tool was built to help clinicians optimize OSA-related hypertension patient diagnosis. Finally, age, family history of hypertension, minimum arterial oxygen saturation, body mass index, and percentage of time of SaO2 < 90% were revealed by the SHAP method as the top five critical variables contributing to the diagnosis of OSA-related hypertension.ConclusionWe established a risk prediction model for OSA-related hypertension patients using the ML method and demonstrated that among the six ML models, the gradient boosting machine model performs best. This prediction model could help to identify high-risk OSA-related hypertension patients, provide early and individualized diagnoses and treatment plans, protect patients from the serious consequences of OSA-related hypertension, and minimize the burden on society
    • …
    corecore